侧边栏壁纸
  • 累计撰写 49 篇文章
  • 累计创建 23 个标签
  • 累计收到 0 条评论

目 录CONTENT

文章目录

分布式全局唯一ID-雪花算法

阿砖
2024-06-26 / 0 评论 / 0 点赞 / 218 阅读 / 6868 字

雪花算法(Snowflake)是一种生成分布式全局唯一ID的算法,生成的ID称为Snowflake IDs或snowflakes。这种算法由Twitter创建,并用于推文的ID。Discord和Instagram等其他公司采用了修改后的版本。

Snowflake 算法生成的 ID 是一个64位的整数,由以下几部分组成:

  1. 时间戳(41位):当前时间戳减去一个自定义的开始时间戳(epoch),结果占据41位。这意味着Snowflake算法可以使用约69年(2^41 / (1000 60 60 24 365))。

  2. 工作机器ID(10位):可以部署在1024个节点,包括5位 datacenterId 和5位 workerId。

  3. 序列号(12位):用于同一毫秒内生成不同 ID,最多可以生产4096个 ID。

  4. 符号位(1位):总是0。

该算法的优点是高性能、低延迟,而且不需要依赖数据库或其他第三方系统就可以生成唯一ID。它能够满足Twitter这种大规模分布式系统的需求,并被许多公司所采用。

在分布式系统中使用Snowflake算法时,每个实例在启动时都需要分配一个唯一的datacenterId和workerId,以确保生成的ID的唯一性。此外,由于依赖系统时钟,如果系统时钟回拨,可能会导致ID冲突或者生成失败,因此需要特别注意时钟同步问题。

下面是Java 生成 Snowflake ID 的工具类

/**
 * Twitter_Snowflake<br>
 * SnowFlake的结构如下(每部分用-分开):<br>
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 -
 * 000000000000 <br>
 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T
 * = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
 * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
 * 加起来刚好64位,为一个Long型。<br>
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
 */
public class SnowflakeDistributeId {

	// ==============================Fields===========================================
	/**
	 * 开始时间截 (2015-01-01)
	 */
	private final long twepoch = 1420041600000L;

	/**
	 * 机器id所占的位数
	 */
	private final long workerIdBits = 5L;

	/**
	 * 数据标识id所占的位数
	 */
	private final long datacenterIdBits = 5L;

	/**
	 * 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
	 */
	private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

	/**
	 * 支持的最大数据标识id,结果是31
	 */
	private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

	/**
	 * 序列在id中占的位数
	 */
	private final long sequenceBits = 12L;

	/**
	 * 机器ID向左移12位
	 */
	private final long workerIdShift = sequenceBits;

	/**
	 * 数据标识id向左移17位(12+5)
	 */
	private final long datacenterIdShift = sequenceBits + workerIdBits;

	/**
	 * 时间截向左移22位(5+5+12)
	 */
	private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

	/**
	 * 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
	 */
	private final long sequenceMask = -1L ^ (-1L << sequenceBits);

	/**
	 * 工作机器ID(0~31)
	 */
	private long workerId;

	/**
	 * 数据中心ID(0~31)
	 */
	private long datacenterId;

	/**
	 * 毫秒内序列(0~4095)
	 */
	private long sequence = 0L;

	/**
	 * 上次生成ID的时间截
	 */
	private long lastTimestamp = -1L;

	// ==============================Constructors=====================================

	/**
	 * 构造函数
	 *
	 * @param workerId     工作ID (0~31)
	 * @param datacenterId 数据中心ID (0~31)
	 */
	public SnowflakeDistributeId(long workerId, long datacenterId) {
		if (workerId > maxWorkerId || workerId < 0) {
			throw new IllegalArgumentException(
					String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
		}
		if (datacenterId > maxDatacenterId || datacenterId < 0) {
			throw new IllegalArgumentException(
					String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
		}
		this.workerId = workerId;
		this.datacenterId = datacenterId;
	}

	// ==============================Methods==========================================

	/**
	 * 获得下一个ID (该方法是线程安全的)
	 *
	 * @return SnowflakeId
	 */
	public synchronized long nextId() {
		long timestamp = timeGen();

		// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
		if (timestamp < lastTimestamp) {
			throw new RuntimeException(String.format(
					"Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
		}

		// 如果是同一时间生成的,则进行毫秒内序列
		if (lastTimestamp == timestamp) {
			sequence = (sequence + 1) & sequenceMask;
			// 毫秒内序列溢出
			if (sequence == 0) {
				// 阻塞到下一个毫秒,获得新的时间戳
				timestamp = tilNextMillis(lastTimestamp);
			}
		}
		// 时间戳改变,毫秒内序列重置
		else {
			sequence = 0L;
		}

		// 上次生成ID的时间截
		lastTimestamp = timestamp;

		// 移位并通过或运算拼到一起组成64位的ID
		return ((timestamp - twepoch) << timestampLeftShift) //
				| (datacenterId << datacenterIdShift) //
				| (workerId << workerIdShift) //
				| sequence;
	}

	/**
	 * 阻塞到下一个毫秒,直到获得新的时间戳
	 *
	 * @param lastTimestamp 上次生成ID的时间截
	 * @return 当前时间戳
	 */
	protected long tilNextMillis(long lastTimestamp) {
		long timestamp = timeGen();
		while (timestamp <= lastTimestamp) {
			timestamp = timeGen();
		}
		return timestamp;
	}

	/**
	 * 返回以毫秒为单位的当前时间
	 *
	 * @return 当前时间(毫秒)
	 */
	protected long timeGen() {
		return System.currentTimeMillis();
	}
}

测试代码

public static void main(String[] args) {
//		开始时间
	long startTime = System.currentTimeMillis();

	SnowflakeDistributeId idWorker = new SnowflakeDistributeId(0, 0);
	ArrayList<Long> arrayList = new ArrayList<Long>();
	
	for (int i = 0; i < 10000; i++) {

		long id = idWorker.nextId();
		arrayList.add(id);
	}
		System.out.println(arrayList.stream().map(String::valueOf).collect(Collectors.joining()));
//		结束时间
	long endTime = System.currentTimeMillis();

	System.out.println(endTime - startTime);
}

其实不用写工具类也可以实现雪花ID 只需要导入 Hutool 工具类就可以了。

	<dependencies>
		<dependency>
			<groupId>cn.hutool</groupId>
			<artifactId>hutool-all</artifactId>
			<version>5.8.16</version>
		</dependency>
	</dependencies>

实现方法

	public static void main(String[] args) {
		Snowflake snowflake = IdUtil.getSnowflake(1, 1);
		System.out.println(snowflake.nextId());
	}


0

评论区